

Development of FPGA-Based Verification Simulation Accelerator

Presenter: Gary Burke

Authors: Gary Burke and Jane Oh

Affiliation: Jet Propulsion Laboratory, California Institute of Technology

Address: 4800 Oak Grove Drive, Pasadena, CA 91109

Email: Gary.R.Burke@jpl.nasa.gov

Phone: 818-354-1616 Fax: 818-393-4272

Presentation Outline

- Key Challenge
- Long Term Objectives
- Technical Approach Highlights
- Expected Benefits

Objectives

- Key challenge:
 - FPGAs are becoming a more critical component of space systems. Techniques and methodologies for assuring and verifying <u>FPGAs</u> must be developed that adequately address the increased complexity of the devices required by today's missions.
- Long term objectives:
 - Reduce the amount of time required to verify critical FPGAs by an order of magnitude
 - Develop assurance methodologies that applied during the development of FPGAs will reduce by 50% the defect escapes

Technical Approach Highlights

- Design of Test FPGA
 - Define sampling nodes, sampling speed, muxing and buffering
 - Define insertion strategy, pattern buffers, and sequential behavior
 - Define block diagram, communication ports, buffers, and map onto existing part
- Development of Test FPGA
 - Define I/Os, block diagram, and function of all blocks
 - Write verilog code, test benches, verification matrix, and simulate
- Development of Test Software
 - Define registers, commands, data format,
 - Define software architecture, modeling strategy, user interface, and error detection
 - Write C code, test cases, verification matrix, and simulate

Typical FPGA Verification

- Simulation
 - Extensive HDL test benches
 - Model external world
- Breadboard
 - FPGA COTS or Custom Board
 - Re-programmable FPGA prefered
 - Use Bench test Equipment (BTE)
- System test
 - Engineering Model (EM) in system
 - Run system with software, external hardware
- Assembly and Test
 - Assemble final board and test in system.

Issues

- Simulation will get most of the problems
 - Time consuming to cover every case
- Subtle errors remain due to
 - Some cases not covered in test bench
 - External world not modeled correctly
 - Unexpected interaction with other components
- Breadboard test will get most of remaining problems but difficult to find source of problems
 - Lack of probe points inside FPGA
 - Need to bring out internal nodes onto unused pins
 - Lack of probe points on board
 - Difficult to probe small parts
 - Hard to set up error conditions

Issues - continued

- Problems at EM level will cause major cost and schedule delays
- System hard to probe, embedded cards in chassis.
- Subtle bug hard to capture
- Worse case is problem manifests itself at Final Assembly and Test
- Problem due to last minute updates/ modifications not in EM system
- Very costly to debug and fix
- Worst case is problem appears after launch!
 - Possible loss of mission

Testability

- Testability needs to be included in design
- Test ports on FPGA and board will help
 - BB test
 - EM test
 - Final A&T
- Using standard format Test Port allows re-use of generic BTE

Existing FPGA debug

- Existing methods for probing an FPGA during test exist and are effective
- Chipscope is very useful as a way to probe Xilinx FPGAs
 - Uses embedded code compiled with user code
 - Uses JTAG port
- Silicon Explorer
 - Uses FPGA structure to probe any node
 - Uses JTAG/ Probe pins

New Debug Tool

- Works with any FPGA
- Has more capability than existing tools
 - See chart
- Provides a standard FPGA BTE for any Board
- Speeds up debug process by giving
 - High visibility of FPGA nodes
 - Easy user interface
 - Comparison of actual with model
 - Method to step to sequence causing the problem

Expected Benefits

	Silicon explorer	Chipscope	Our Test FPGA
General purpose	No: Actel FPGA only	No: Xilinx FPGA only	Any FPGA/ASIC
Monitor internal nodes	Yes	Yes	Yes
At speed monitoring	Yes: but high speed problem with signal integrity	Yes: but limited sample size	Yes
Number of signals monitored	2-4 only (depends on device type)	limited by internal memory: typical 16	limited by bus bandwidth; typically 100
Logic analyzer display	Yes	Yes	Yes
Comparison against model	No	No	Yes: by comparing against the model, problems can be found before they have a major effect on the I/Os
Static Stimulus	No	Yes	Yes: large number of static stimulus possible
Dynamic stimulus	No	No	Yes: full pattern generator included. This allows easy setup of conditions leading to possible problem.
Internal FPGA resources needed	No	Yes: large amount of on- chip storage needed to store results	Yes: but no onchip storage needed, and on-chip logic is a very small overhead.